=

Data structure archaeology:
scrape away the dirt and glue back the pieces!

Asia Slowinska, Istvan Haller, Andrei Bacs, Silviu Baranga,
Herbert Bos

DIMVA 2014
July 10, 2014

1/25

Introduction

®0000000

Significant research on control-flow obfuscation

e e T e
T O —
Virwaliza o222 a0y, “SQ

I’edicates‘
flow f\a“e“mg g

CO““'O‘

- Control-Flow Graph

R

2/25

Introduction
0@000000

But what about the data?

\ rog ram Data

R

3/25

Introduction
00@00000

Program data valuable for reverse engineering

@ Recent work on data structure reversing
e Data layout left intact by control obfuscation

o Howard (NDSS'11), TIE (NDSS'11)

@ Obfuscation resilient code extraction
e The underlying data-flow is typically unchanged
o Trace-oriented programming (CCS'13)

o Compiler techniques could eliminate unnecessary code

=

4/25

Introduction
000@0000

Available data-obfuscation strategies

@ Variable Splitting

e Split variable content across multiple locations
o Locations may be reordered or interleaved
e Memory dumps contain garbled data

e Used in commercial obfuscation products

Original 1 Obfuscated
32 /AI:’\—QN 6
VAR A I VAR A1 VAR A2
0x12345678 I 0x1234 0x5678
|
32 /:/R—hg 6
VAR B I VAR B1 VAR B2
O0xABCDEF I OxAB O0xCDEF
ke I
o n

rije Universiteit

5/25

Introduction
00008000

Available data-obfuscation strategies

@ Variable Merging

e Share memory location by multiple variables

e Typically combined with splitting

Original | Obfuscated
- e

32 I 64
VAR A
ox12345678 | || VAR AB
I 0x120034AB56CD78EF
2 /_I_L,/
VARB
OxABCDEF

=

6/25

Introduction
00000800

Research questions

@ Are the currently suggested data obfuscation techniques viable
against a determined attacker?

@ Are there fundamental properties of data-flows which make
attempts at obfuscation futile?

=

7/25

Introduction
00000080

Research questions

@ Are the currently suggested data obfuscation techniques viable
against a determined attacker? NO!()

@ Are there fundamental properties of data-flows which make
attempts at obfuscation futile?

=

8/25

Introduction
0000000@

Approach

Carter data deobfuscation tool against split/merge obfuscation

Leverages inherent properties of the obfuscation

Based on program access patterns and information flow

Focus: split obfuscation

=

9/25

Obfuscation
€00000000

Split obfuscation

VAR A

=

10/25

Split obfuscation

=

SPLIT ENCODING

o> N

VAR A

VAR A1

VAR A2

11/25

Split obfuscation

SPLIT ENCODING

o> N

VAR A VAR A1 VAR A2

OP

VAR A"

=

12/25

Split obfuscation

VAR A VAR A1 VAR A2
> ZLEELECETERE > |
OP1 OP2
Y Y

VAR A1" VAR A2"

=

13/25

Split obfuscation

VAR A VAR A1 VAR A2
> ZLEELECETERE > |
OP1 OP2
Y Y
VAR A" VAR A1" VAR A2"

~——rFg ~

SPLIT DECODING

=

14/25

Obfuscation
000008000

Example of split obfuscation

Representation: Upper K-1 bits and Lowest bit

Encoding: X1 = X/2 and X2 = X mod 2

Decoding: X = X1 %2+ X2

Mapping for addition (Z = X + Y)
0 Z1=X1+4+Y1+(X2+Y2)/2
o 72 =(X2+Y2) mod 2

=

15/25

rije Universiteit

Obfuscation
000000800

Properties of the obfuscation

@ P1: Access to the variable is synchronized

e The sub-components are always accessed together

o The accesses are grouped together in time

SPLIT ENCODING

VAR A VAR A1 VAR A2
P > i
OP1: OoP2:
Y Y

VAR A1" VAR A2"

®

16/25

Obfuscation
000000080

Properties of the obfuscation

@ P2: The variable must be decoded when interacting externally

o External library calls and pointer dereferences cannot use
obfuscated value (system unaware of obfuscation)

e Decoding involves a merger of the individual data-flows

SPLIT ENCODING

VAR A VAR A1 VAR A2
e =
OP1 oP2:
¥ ¥

VAR A" VARAT'| |VAR A2"

SPLIT DECODING

®

rije Universiteit

17/25

Obfuscation
00000000@

Potential corner-cases

o Compilers encoding 64-bit values in 32-bit binaries
o The two 32-bit components act as split components
e The components are accessed together and share data-flows

o Unavoidable false-positives (small percentage in practice)

@ Some variable pairs may be used synchronously
o For example: array+length, elements of a struct
e The lack of decoding can filter false positives

e In most cases the data-flows never merge, thus the candidate
is not confirmed to be a split variable

b

rie Universiet amsterdamn 18/25

Carter - Setup

@ Use memory access trace to detect access groups (P1)
o Groups of variables accessed together within a short time-frame

o Based on reference affinity grouping (cache optimization)

@ Uses information-flow tracking to confirm candidates (P2)
o Each entry in a group receives its own tag
o Tags are propagated along data-flow

o Carter checks if tags are ever combined

®

rie Universiet amsterdamn 19/25

Reference affinity grouping

o Traditionally used to maximize cache-line reuse
@ Generates variable partitions where accesses are optimal

o Carter is searching variable groups always accessed together

Time
>
Mem
O000O000000O0O0O0D0O0O0O0O0OD0O0OD0OD0O0ODO0OO
Acc.
K
~
A [] [] []
B [] [) [)
C [elel IelNe) o0 e

A-B vs C

®

ile Universiteit amsterdam 20/25

Evaluation - Basic split detection

=

TPs | Partially correct| FPs | FNs

base64 | 79% 21% 0% | 0%
expr | 100% 0% 0% | 0%
factor | 58% 42% 1.84%| 0%
Is 94% 6% 0.41%| 0%
grep | 88% 11% 0.82%| 1%
gzip | 93% 0% 0% | 7%
lighttpd| 97% 3% 0% | 0%
wget | 84% 12% 0.76%| 4%

Table: Results for deobfuscation of split variables.

21/25

Impact of control obfuscation

@ Dynamic analysis ensures proper data-flow tracking
@ Extra instructions may affect memory trace

@ Can be simulated by injecting spurious memory accesses

Time
>
Mem O00 0000 0O0O0
Acc Aoz
| SPURIOUS
A °
B)

=

22/25

Carter
ooooe

Evaluation - Combined with control obfuscation

TPs | Partially correct| FPs | FNs

base64 | 72% 20% 0% | 8%
expr | 82% 0% 0% | 18%
factor | 56% 39% 1.84%| 5%
Is 79% 12% 0.83%| 9%
grep | 72% 16% 0.68%| 12%
gzip | 100% 0% 0% | 0%
lighttpd| 94% 2% 0% | 4%
wget | 78% 10% 0.57%| 12%

Table: Results for deobfuscation with 4 spurious accesses.

=

23/25

Conclusions
0

Impact on future data obfuscation approaches

Data obfuscation still in its infancy

More sophisticated approaches necessary in the future

Static placement of variables is subject to temporal analysis

Suggestion: aggressive memory reuse

Additionally: disrupt data-flow tracking

=

24/25

Conclusions
oe

Conclusions

o Carter is a new deobfuscation tool, against the split and
split+merge data obfuscation techniques

@ Existing techniques vulnerable against determined attackers

@ New research avenues to break the assumptions of Carter

®

rie Universiet amsterdamn 25/25

	Introduction
	Overview

	Obfuscation
	Overview

	Carter
	Overview

	Conclusions
	Overview

