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Significant research on control-flow obfuscation
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But what about the data?
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Program data valuable for reverse engineering

Recent work on data structure reversing

Data layout left intact by control obfuscation

Howard (NDSS’11), TIE (NDSS’11)

Obfuscation resilient code extraction

The underlying data-flow is typically unchanged

Trace-oriented programming (CCS’13)

Compiler techniques could eliminate unnecessary code
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Available data-obfuscation strategies

Variable Splitting

Split variable content across multiple locations

Locations may be reordered or interleaved

Memory dumps contain garbled data

Used in commercial obfuscation products
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Available data-obfuscation strategies

Variable Merging

Share memory location by multiple variables

Typically combined with splitting
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Research questions

Are the currently suggested data obfuscation techniques viable
against a determined attacker?

Are there fundamental properties of data-flows which make
attempts at obfuscation futile?
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Research questions

Are the currently suggested data obfuscation techniques viable
against a determined attacker? NO! _©̈

Are there fundamental properties of data-flows which make
attempts at obfuscation futile? Does not seem like it! ^©̈
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Approach

Carter data deobfuscation tool against split/merge obfuscation

Leverages inherent properties of the obfuscation

Based on program access patterns and information flow

Focus: split obfuscation
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Split obfuscation
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Split obfuscation
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Split obfuscation
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Split obfuscation
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Split obfuscation

14 / 25



Introduction Obfuscation Carter Conclusions

Example of split obfuscation

Representation: Upper K-1 bits and Lowest bit

Encoding: X1 = X/2 and X2 = X mod 2

Decoding: X = X1 ∗ 2 + X2

Mapping for addition (Z = X + Y )

Z1 = X1 + Y 1 + (X2 + Y 2)/2
Z2 = (X2 + Y 2) mod 2
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Properties of the obfuscation

P1: Access to the variable is synchronized

The sub-components are always accessed together

The accesses are grouped together in time
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Properties of the obfuscation

P2: The variable must be decoded when interacting externally

External library calls and pointer dereferences cannot use
obfuscated value (system unaware of obfuscation)

Decoding involves a merger of the individual data-flows
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Potential corner-cases

Compilers encoding 64-bit values in 32-bit binaries

The two 32-bit components act as split components

The components are accessed together and share data-flows

Unavoidable false-positives (small percentage in practice)

Some variable pairs may be used synchronously

For example: array+length, elements of a struct

The lack of decoding can filter false positives

In most cases the data-flows never merge, thus the candidate
is not confirmed to be a split variable
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Carter - Setup

Use memory access trace to detect access groups (P1)

Groups of variables accessed together within a short time-frame

Based on reference affinity grouping (cache optimization)

Uses information-flow tracking to confirm candidates (P2)

Each entry in a group receives its own tag

Tags are propagated along data-flow

Carter checks if tags are ever combined

19 / 25



Introduction Obfuscation Carter Conclusions

Reference affinity grouping

Traditionally used to maximize cache-line reuse

Generates variable partitions where accesses are optimal

Carter is searching variable groups always accessed together
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Evaluation - Basic split detection

TPs Partially correct FPs FNs

base64 79% 21% 0% 0%
expr 100% 0% 0% 0%

factor 58% 42% 1.84% 0%
ls 94% 6% 0.41% 0%

grep 88% 11% 0.82% 1%
gzip 93% 0% 0% 7%

lighttpd 97% 3% 0% 0%
wget 84% 12% 0.76% 4%

Table: Results for deobfuscation of split variables.
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Impact of control obfuscation

Dynamic analysis ensures proper data-flow tracking

Extra instructions may affect memory trace

Can be simulated by injecting spurious memory accesses
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Evaluation - Combined with control obfuscation

TPs Partially correct FPs FNs

base64 72% 20% 0% 8%
expr 82% 0% 0% 18%

factor 56% 39% 1.84% 5%
ls 79% 12% 0.83% 9%

grep 72% 16% 0.68% 12%
gzip 100% 0% 0% 0%

lighttpd 94% 2% 0% 4%
wget 78% 10% 0.57% 12%

Table: Results for deobfuscation with 4 spurious accesses.
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Impact on future data obfuscation approaches

Data obfuscation still in its infancy

More sophisticated approaches necessary in the future

Static placement of variables is subject to temporal analysis

Suggestion: aggressive memory reuse

Additionally: disrupt data-flow tracking
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Conclusions

Carter is a new deobfuscation tool, against the split and
split+merge data obfuscation techniques

Existing techniques vulnerable against determined attackers

New research avenues to break the assumptions of Carter
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