
Introduction Obfuscation Carter Conclusions

Data structure archaeology:
scrape away the dirt and glue back the pieces!

Asia Slowinska, István Haller, Andrei Bacs, Silviu Baranga,
Herbert Bos

DIMVA 2014
July 10, 2014

1 / 25



Introduction Obfuscation Carter Conclusions

Significant research on control-flow obfuscation

2 / 25



Introduction Obfuscation Carter Conclusions

But what about the data?

3 / 25



Introduction Obfuscation Carter Conclusions

Program data valuable for reverse engineering

Recent work on data structure reversing

Data layout left intact by control obfuscation

Howard (NDSS’11), TIE (NDSS’11)

Obfuscation resilient code extraction

The underlying data-flow is typically unchanged

Trace-oriented programming (CCS’13)

Compiler techniques could eliminate unnecessary code

4 / 25



Introduction Obfuscation Carter Conclusions

Available data-obfuscation strategies

Variable Splitting

Split variable content across multiple locations

Locations may be reordered or interleaved

Memory dumps contain garbled data

Used in commercial obfuscation products

5 / 25



Introduction Obfuscation Carter Conclusions

Available data-obfuscation strategies

Variable Merging

Share memory location by multiple variables

Typically combined with splitting

6 / 25



Introduction Obfuscation Carter Conclusions

Research questions

Are the currently suggested data obfuscation techniques viable
against a determined attacker?

Are there fundamental properties of data-flows which make
attempts at obfuscation futile?

7 / 25



Introduction Obfuscation Carter Conclusions

Research questions

Are the currently suggested data obfuscation techniques viable
against a determined attacker? NO! _©̈

Are there fundamental properties of data-flows which make
attempts at obfuscation futile? Does not seem like it! ^©̈

8 / 25



Introduction Obfuscation Carter Conclusions

Approach

Carter data deobfuscation tool against split/merge obfuscation

Leverages inherent properties of the obfuscation

Based on program access patterns and information flow

Focus: split obfuscation

9 / 25



Introduction Obfuscation Carter Conclusions

Split obfuscation

10 / 25



Introduction Obfuscation Carter Conclusions

Split obfuscation

11 / 25



Introduction Obfuscation Carter Conclusions

Split obfuscation

12 / 25



Introduction Obfuscation Carter Conclusions

Split obfuscation

13 / 25



Introduction Obfuscation Carter Conclusions

Split obfuscation

14 / 25



Introduction Obfuscation Carter Conclusions

Example of split obfuscation

Representation: Upper K-1 bits and Lowest bit

Encoding: X1 = X/2 and X2 = X mod 2

Decoding: X = X1 ∗ 2 + X2

Mapping for addition (Z = X + Y )

Z1 = X1 + Y 1 + (X2 + Y 2)/2
Z2 = (X2 + Y 2) mod 2

15 / 25



Introduction Obfuscation Carter Conclusions

Properties of the obfuscation

P1: Access to the variable is synchronized

The sub-components are always accessed together

The accesses are grouped together in time

16 / 25



Introduction Obfuscation Carter Conclusions

Properties of the obfuscation

P2: The variable must be decoded when interacting externally

External library calls and pointer dereferences cannot use
obfuscated value (system unaware of obfuscation)

Decoding involves a merger of the individual data-flows

17 / 25



Introduction Obfuscation Carter Conclusions

Potential corner-cases

Compilers encoding 64-bit values in 32-bit binaries

The two 32-bit components act as split components

The components are accessed together and share data-flows

Unavoidable false-positives (small percentage in practice)

Some variable pairs may be used synchronously

For example: array+length, elements of a struct

The lack of decoding can filter false positives

In most cases the data-flows never merge, thus the candidate
is not confirmed to be a split variable

18 / 25



Introduction Obfuscation Carter Conclusions

Carter - Setup

Use memory access trace to detect access groups (P1)

Groups of variables accessed together within a short time-frame

Based on reference affinity grouping (cache optimization)

Uses information-flow tracking to confirm candidates (P2)

Each entry in a group receives its own tag

Tags are propagated along data-flow

Carter checks if tags are ever combined

19 / 25



Introduction Obfuscation Carter Conclusions

Reference affinity grouping

Traditionally used to maximize cache-line reuse

Generates variable partitions where accesses are optimal

Carter is searching variable groups always accessed together

20 / 25



Introduction Obfuscation Carter Conclusions

Evaluation - Basic split detection

TPs Partially correct FPs FNs

base64 79% 21% 0% 0%
expr 100% 0% 0% 0%

factor 58% 42% 1.84% 0%
ls 94% 6% 0.41% 0%

grep 88% 11% 0.82% 1%
gzip 93% 0% 0% 7%

lighttpd 97% 3% 0% 0%
wget 84% 12% 0.76% 4%

Table: Results for deobfuscation of split variables.

21 / 25



Introduction Obfuscation Carter Conclusions

Impact of control obfuscation

Dynamic analysis ensures proper data-flow tracking

Extra instructions may affect memory trace

Can be simulated by injecting spurious memory accesses

22 / 25



Introduction Obfuscation Carter Conclusions

Evaluation - Combined with control obfuscation

TPs Partially correct FPs FNs

base64 72% 20% 0% 8%
expr 82% 0% 0% 18%

factor 56% 39% 1.84% 5%
ls 79% 12% 0.83% 9%

grep 72% 16% 0.68% 12%
gzip 100% 0% 0% 0%

lighttpd 94% 2% 0% 4%
wget 78% 10% 0.57% 12%

Table: Results for deobfuscation with 4 spurious accesses.

23 / 25



Introduction Obfuscation Carter Conclusions

Impact on future data obfuscation approaches

Data obfuscation still in its infancy

More sophisticated approaches necessary in the future

Static placement of variables is subject to temporal analysis

Suggestion: aggressive memory reuse

Additionally: disrupt data-flow tracking

24 / 25



Introduction Obfuscation Carter Conclusions

Conclusions

Carter is a new deobfuscation tool, against the split and
split+merge data obfuscation techniques

Existing techniques vulnerable against determined attackers

New research avenues to break the assumptions of Carter

25 / 25


	Introduction
	Overview

	Obfuscation
	Overview

	Carter
	Overview

	Conclusions
	Overview


