Healing Heartbleed

Vulnerability Mitigation with Internet-wide Scanning

J. Alex Halderman

Based on
joint work:

Mining Your Ps and Qs: Widespread Weak Keys in Network Devices
Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman

21st Usenix Security Symposium (Sec '12), August 2012

ZMap: Fast Internet-Wide Scanning and Its Security Applications
Zakir Durumeric, Eric Wustrow, and J. Alex Halderman

22nd Usenix Security Symposium (Sec “13), August 2013

Analysis of the HTTPS Certificate Ecosystem
Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman

13th Internet Measurement Conference (IMC ’13), October 2013

An Internet-Wide View of Internet-Wide Scanning
Zakir Durumeric, Michael Bailey, and J. Alex Halderman
23rd USENIX Security Symposium (Sec '14), August 2014

Zippier ZMap: Internet-Wide Scanning at 10Gbps

David Adrian, Zakir Durumeric, Gulshan Singh, and J. Alex Halderman

8th USENIX Workshop on Offensive Technologies (WOOQOT ’14), August 2014
The Matter of Heartbleed

Zakir Durumeric, James Kasten, J. Alex Halderman, Michael Bailey, Frank Li,
Nicholas Weaver, Bernhard Amann, Jethro Beekman, Mathias Payer,

and Vern Paxson. In submission.

@ Electronic Frontier Foundation
: - N .
LIRSS

e u .
.. o~ . ,
- l\.'\-\.- .
_— A N
% ,l'" ¥y i
" 4 . - .
.-.\.-H. J'n.l __' '_\.""|I
. Ly

Carna botnet Internet Census 2012

420 Thousand Carna Botnet clients active from March 2012 to December 2012

Barriers to using Internet-wide scans?

Census and Survey of the Visible Internet (2008)
3 months to complete ICMP census (2200 CPU-hours)

EFF SSL Observatory: A glimpse at the CA ecosystem (2010)
3 months on 3 Linux desktop machines (6500 CPU-hours)

Mining Ps and Qs: Widespread weak keys in network devices (2012)
25 hours acoss 25 Amazon EC2 Instances (625 CPU-hours)

Carna botnet Internet Census (2012)

420,000 usurped hosts

What if...?

What if Internet-wide surveys didn’t require heroic effort?
What if scanning the IPv4 address space took under an hour?

What if we wrote a whole-Internet scanner from scratch?

zmap

an open-source tool that can port scan the entire
IPv4 address space from just one machine
in under 45 minutes with 98% coverage

With ZMap, an Internet-wide TCP SYN
scan on port 443 is as easy as:

$ sudo apt-get install zmap
$ zmap -p 443 -0 results.csv

found 34,132,693 listening hosts
(took 44ml2s)

97% of gigabit Ethernet
linespeed (1200 x NMAP)

Ethics of Active Scanning

Considerations
Impossible to request permission from all owners
No IP-level equivalent to robots exclusion standard

Administrators may believe that they are under attack

Reducing Scan Impact
Scan in random order to avoid overwhelming networks

Signal benign nature over HTTP and w/ DNS hostnames

Honor all requests to be excluded from future scans

Be a good neighbor!

/Map Architecture

Typical Port Scanners

Reduce state by scanning in batches
- Time lost due to blocking
- Results lost due to timeouts

Track individual hosts and retransmit
- Most hosts will not respond

Avoid flooding through timing
- Time lost waiting

Utilize existing OS network stack
- Not optimized for immense
number of connections

ZMap Approach

Eliminate local per-connection state
- Fully asynchronous components
- No blocking except for network

Shotgun scanning approach
- Always send n probes per host

Scan widely dispersed targets
- Send as fast as network allows

Probe-optimized network stack
- Bypass inefficiencies by
generating Ethernet frames

Addressing Probes

How do we randomly scan addresses without excessive state?

Scan hosts according to random permutation.

Iterate over multiplicative group of integers modulo p.

Sedmod7 =4
5 — 4 Negligible State
tromed =S \4 e 1. Primitive Root
1 6 2. Current Location
3.5mod7=1\ /6.5m0d7=2 3. First Address
3t 2

2eb5mod7 =3

Validating Responses

How do we validate responses without local per-target state?

Encode secrets into mutable fields of probe packets
that will have recognizable effect on responses.

Ethernet

IP

TCP

receiver sender lenath data
MAC address MAC address &

sender receiver
|l IP address IP address il

sequence
number

sender receiver
port port

ack.

number

data

Validating Responses

How do we validate responses without local per-target state?

Encode secrets into mutable fields of probe packets
that will have recognizable effect on responses.

Ethernet receiver sender

MAC address MAC address S data

IP sender receiver

|l IP address IP address 2l

TCP sender receiver sequence ack. data

port port number number

Packet Transmission and Receipt

How do we make processing probes easy and fast?

1. ZMap Framework handles the hard work
2. Probe Modules fill in packet details, interpret responses
3. Output Modules allow follow-up or further processing

Configuration, Probe Packet Tx
Generation (raw socket)

Addressing,
and Timing

Output Response Packet Rx
Handler Interpretation (libpcap)

Hit Rate (percent)

Scan Rate

How fast is too fast?

1.02
1.01 ¢ —
L

0.99 r m T T T

098 | ¢ ¢ % % 1| % % % % %

0.97 + | : ?

0.96 r - ol

0.95)

094 ———t— L

;000 6\006\000;000%\006 00)000 %0%00%\00;000;’00/;300{900;700 e
0 00 QY Y Y Y QY
00 0%

Scan Rate (packets per second)

bits per seccocnd

Scan Rate — 10 Gbps?

How fast is too fast?

Commodity Internet Traffic In and Cut of U of M

0Z:00 04:00 06:00 DB:00 10:00 12:00 14:00 16:00 1E:00 Z0:00 22:00 00:00

B kits in to U of M Mbit out of U of M

Scan Rate —

How fast is too fast?

10 Gbps?

09 t

08 t

0.7

05

04 t

Hit Rate (normalized)

03

02 t

01

" Hitrate +

Our network finally starts to drop off |
after about 3 Mpps (about 2 Gbps)

3 4

s 6 7 &8 9 10 1M 12 13 14 15

Fackets Per Second (millions)

ZMap vs. Nmap

Averages for scanning 1 million random hosts:

Nl T R EEE Duration Est: Internet
(mm:ss) Wide Scan
Nmap (1 probe) 81.4% 24:12 62.5 days
Nmap (2 probes) 97.8% 45:03 116.3 days
ZMap (1 probe) 98.7% 00:10 1:09:35

ZMap (2 probes) 100.0% 00:11 2:12:35

ZMap can scan more than 1300 times faster than the most aggressive
Nmap default configuration (“insane”

Surprisingly, ZMap also finds more results than Nmap

Trusted Certificates

/Map: Applications

We did > 300 Internet-wide scans over 2 years (> 1 trillion probes).
Please ignore probes from 141.212.121.0/24. It’s just our desktop.

What else can researchers do with ZMap?

Track Adoption of Defenses

1.25

1.2 |

1.15

11}

HTTPS Hosts -------

Unique Certificates ----- -
Trusted Certificates

Alexa Top 1 Mil. Domains ——

E.V. Certificates -~ -

Netcraft HTTP Hosts -

e
P

.......
%

-]

.....
e . ~o
e H KR el

.....................

.......

N~ d
v

Fine-grained analysis of
HTTPS ecosystem.
> 100 full scans over a year

Many vulnerabilities!

10% growth in HTTPS sites
23% among Alexa Top 1 M.

Historical data useful for
tracking botnets and APTs.

/Map: Applications

We did > 300 Internet-wide scans over 2 years (> 1 trillion probes).
Please ignore probes from 141.212.121.0/24. It’s just our desktop.

What else can researchers do with ZMap?

Detect Service Disruptions

o A
~ Ea

L 3

T
W . =

A
NN
.. ¢\,

‘x'c

Areas with >30% decrease
in listening hosts, port 443
October 29-31, 2013

/Map: Applications

We did > 300 Internet-wide scans over 2 years (> 1 trillion probes).
Please ignore probes from 141.212.121.0/24. It’s just our desktop.

What else can researchers do with ZMap?

Expose Vulnerable Hosts

e Took < 4 hours to code and run

UPnP discovery scan, 150 SLOC.
* Found 3.34 million devices
vulnerable to HD Moore’s attacks.

e Compromise possible with a
single UDP packet!

Tracking the Scanners

Data from large darknet allow us to see scans as they happen.
Both researchers and attackers using scanning to spot vulnerable hosts.

1e+10 —r———— - e
| <1% Scans
>=1% Scans
2 1e+09 | Public Disclosure | [/A o L A
o] ? ? :
o) L
S
X 1e+08 [
©
m
w
> i
2
S 1e+07 |
Backdoor on
TCP/32764 . [\ |
December 2013 1406 ——v B e PR UG s

1214 12/21 12/28 01/04 01/11 01/18 01/25

43 large scans, starting within 24 hours:
Shodan, Rapid7, academics, bullet-proof hosting

Broken Cryptographic Keys

Why are a large fraction of hosts sharing cryptographic keys?

> 60% of hosts served non-unique public keys.

Port 443 (HTTPS) Port 22 (SSH)
Live Hosts 12.8 M 10.2 M
Distinct RSA public keys 56 M 3.8M
Distinct DSA public keys 6,241 2.8 M

Many valid (and common) reasons to share keys:

» Shared hosting situations. Virtual hosting.

» A single organization registers many domain names with the
same key.

Broken Cryptographic Keys

Why are a large fraction of hosts sharing cryptographic keys?
> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

» Device default certificates/keys.

» Apparent entropy problems in key generation.

VS SSH:
default certificates/keys: default or low-entropy keys:
670,000 hosts (5%) 1,000,000 hosts (10%)

low-entropy repeated keys:
40,000 hosts (0.3%)

B Devices
Hosting providers
Unknown/other

10°

Number of repeats

50 most repeated RSA SSH keys

I FTT]

" N

Factorable Cryptographic Keys

Public key modulus N = pq. Factoring N reveals the private key.
Factoring 1024-bit RSA not known to be feasible.

However... if two RSA moduli share a prime factor in common,

N,=pg, N,=pq,
gcd(N,, N,y) =p
Outside observer can factor both with GCD algorithm.

Security Implications:

» Anyone could man-in-the-middle vulnerable hosts.

» Anyone can decrypt traffic from TLS RSA key exchange.

Computing pairwise GCDs

Computing pairwj ataset would take

15us X airs ~ 30 years

of computation ti

Efficiently computing pairwise GCDs

Adapted efficient algorithm due
to [Bernstein 2004].

Ran on 11,170,883 distinct
moduli in SSL, SSH, and EFF
Observatory datasets

» 1.5 hours on 16 cores.

» $5 of Amazon ec2 time.

Ni N> N3 Ny N
VARV NS
> 9 >pr0 uct
\ / tree
NiNaN3Ny y, \
mod Nﬁﬁ/ﬁ/ \I’I\I‘Dd N2N2 >remainder
/ \]‘ ’ / 3\4‘ tree
modN; modN; modN] modN; /
| l l |
/Ny /N2 /N3 /Ny

l

gcd(iﬂl) gcd(lﬂz)gcd(“N3) gcd(laM)

What happens when we GCD all the keys?

» 2,314 distinct prime factors factored 16,717 moduli.
» Private keys for 64,081 (0.50%) of HTTPS servers.
» Private keys for 2,459 (0.03%) of SSH servers.

Private keys for 0.5% of all TLS hosts!? 1% of SSH hosts!?

... only two of the factored certificates were signed by a CA,
and both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

Cl=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, O0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddre:
C=CN, ST=Guangdong, O0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122003008148

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, 0=2Wire, 0U=Gateway Device/seriallumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, O0=TP-LINK Technologies CO0., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072008005537

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000130

CN=self-signed, CN=system generated, CN=0162062008001534

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, 5T=0regon, L=Wilsonville, CN=141.213.19.107, O=Kerox Corporation, 0OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, CN=0162012011000446

Why do we find vulnerable keys?

Evidence strongly suggested widespread implementation problems.

Clue #1: Vast majority generated by network devices:

» Juniper network security devices
» Cisco routers
» IBM server management cards

» Intel server management cards

» Innominate industrial-grade firewalls

Identified devices from > 50 manufacturers

Linux random number generators

/ N
/dev/random /dev/urando
“high-quality” randomness \ pseudorandomness]
blocks if insutficient entropy never blocl :

available
\ -

As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/S5H keys—man random

/* We’l1ll use /dev/urandom by default,
since /dev/random is too much hassle. If
system developers aren’t keeping seeds
between boots nor getting any entropy from
somewhere it’s their own fault. */

#define DROPBEAR_RANDOM DEV "/dev/urandom”

random's conservative blocking behavior is a usability problem.

This results in many developers using urandom for cryptography.

Inside Linux /dev/urandom

Hypothesis: Devices are using /dev/urandom
to automatically generate crypto keys on first boot.

> Input Pool
“Anyone who considers

Only hap F%/ff}n?ﬁ/g raugegj B%jfgzj; is,

contains %}‘OCO% am ?Sln ”

— John von Neumann

Nonblocking Pool

Problem 1: Headless or Problem 2: urandom may not

. /dev/urandom .
embedded devices may lack have incorporated any entropy

all these entropy sources when queried by software

Detected Problem in Linux Kernel

Why are embedded systems generating broken keys?

Entropy first mixed

into /dev/urand

Input pool entropy (bits)

30 35 40
Time since boot (s)

45 50 55 60 65

f OIO%‘SS/H Seejs /dev/urandom may be predictable
o ACEHETAREON for a period after boot.

om

¥5.000

S

15,000

10,000

w
Bytes read from nonblocking pool

Responsible Disclosure

Wrote disclosures to 61 companies.
Coordinated through US-CERT, ICS-CERT, JP-CERT.

13 had Security Response Team contact information available.
28 sent us a response from a human.

13 told us they fixed the problem.

5 informed us of security advisories.

Linux kernel has been patched.

TLS Heartbeats

TLS Heartbeat Request:

01 00 09 ‘IHEARTTLS’ ef fo d3 ..
type length payload padding (16 bytes)

TLS Heartbeat Response: ‘L

02 00 09 ‘IHEARTTLS”’ dc 06 84 ..

type length payload padding (16 bytes)

(Based on joint work with Zakir Durumeric, James Kasten, J. Alex Halderman,
Michael Bailey, Frank Li, Nicholas Weaver, Bernhard Amann, Jethro Beekman,
Mathias Payer, and Vern Paxson.)

OpenSSL Heartbleed Vulnerability

Malformed TLS Heartbeat Request: ‘ ' ‘

01 FF FF Payload missing!

type length
Vulnerable OpenSSL Heartbeathponse:

Unallocated bytes from memory! dc 06 84 ..

type length payload padding (16 bytes)

Discovered March 2014
Publicly disclosed April 7, 2014

Detecting Heartbleed Hosts

How can we detect vulnerable hosts without exploiting them? ' ‘I

TLS Heartbeat Request:

01 00 00

type length O (invalid per RFC)

Vulnerable OpenSSL Response:

02 00 00 dc 06 84 ..

type length padding (16 bytes)

Patched OpenSSL Response:
Error

Patching Observations

Track patching used large-scale scans

Prior to disclosure, problem affected ~27% of Alexa Top 1M
Most quickly patched. The rest?

20.0
1.8
16.0
126
1.0
8.0
28
g ~a & P e P g & B g 5
o e + F My A +a = =y
fﬁ f} f}% fy fh f% o ’ P i:}“ e;"} f‘;
\?I‘. l@.‘. \?I‘. \?I‘». .@‘. l'?.‘. .@I‘- \?I‘. \?I‘. ‘?‘. \?I‘.

Public Health Report

https://zmap.io/heartbleed

Heartbleed Bug Health Report

The Heartbleed Bugis a vulnerability in the OpenSSL cryptographic library that allows attackers to invisibly read sensitive data from aweb server.
This potentially includes cryptographic keys, usernames, and passwords. More information and frequently asked questions can befound in the
initial disclosure. Information on popular websites that were impacted, but are no longer vulnerable can be found on Mashable's The Heartbleed Hit
List: The Passwords You Need to Change Right Now. If you are concerned that a specific website is vulnerable, you can test that website using the
Qualys SSL Server Test. If you are a Systems Administrator, the EFF has published Heartbleed Recovery for System Administrators with

information on how to protect services.

Most Popular Vulnerable Domains

Below, we list the top 1,000 most popular web domains and mail servers that remain vulnerable to the heartbleed vulnerability as of 4:00 PM EDT

on April 16, 2014. More comprehensive lists of vulnerable web servers and mail servers are also available.

Web Servers
Rank Domain
1829 gi-akademie.com
1863 prezentacya.ru
1873 wallstcheatsheet.com
1907 semalt.com
2700 gazzettagr

3159 protothema.gr

A A E A A A S
H H E H HH 3
H H B dEH :

3428 text.ru

3451 haodf.com

g
g
5

Mail Servers

Rank
727

1700
2100
2951
3277
3992
4081
5186

Domain
turbobit.net
nmisr.com
boerse.bz
ubi.com
filmifullizle.com
uline.com
elektroda.pl

memecenter.com

Vulnerable

Percentage of HTTPS Hosts

Patching Observations

12

10

Alexa Top 1 Million Domains —+—

Public IPv4 Address Space —+— -

~4% of Top 1M
still vulnerable
20 days later

1oNns

Revocat

Revoked TLS Certs

40000

35000

s0000L
25000 memmmmmfmmm”mmmmm_wmmmmémmm”m“mm“mmmmmémmwmmmmmwmmmm"mi
20000 _“m“_uu_i“_””.w“_uuum,_”E“m.w”““_.m””_w.;uu_m.m.“_w.wuuj

5000

Heartbleed Disclosed

Spikes are
GlobalSign

(revoked 55k certs)
GoDaddy
(revoked 22.5k)

Revoked TLS Certs

23% of Alex Top 1M replaced their TLS certs in April!

But... of sites still vulnerable on April 9, only 10% replaced certs.
... of those, only 19% revoked their original certificate.
... and 14% re-used the same private key!

Who Scanned for Heartbleed?

0€-10

_6¢-10
_8¢-10
_L¢-v0
_9¢-v0
_G¢-v0
_ve-v0
_€¢-¥0
_¢¢-¥0
_ L2-¥0
_0¢-¥0
_61-v0
_8l-10
_ Ll-v0
_91-v0
_Sl-v0
_V1-v0
_El-10
_cl-v0
_ L=v0
_0L-¥0
_60-10
80-10

I
-
o
=

sjdwa)ie ueos Jo JaquinN

300 -
200 -

Day

In first week, 41 unique hosts scanning for Heartbleed, 59% from China

The detected probe at 1539 GMT on April 8, 2014

Vulnerability Notifications ﬁ >
a

April 24 scan discovered 588,000 hosts still vulnerable.

What to do?

Vulnerability Notifications ﬁ >
a

0
04/28 04/29 04/30 05/01 05/02 05/03 05/04 05/05 05/06 05/07

Time of Scans

Conclusions

Scans.io Data Repository

|] Internet-Wide Scan Data | x

§ & | 8 https://scans.io

Internet-Wide Scan Data Repository

The Internet-Wide Scan Data Repository is a public archive of research data collected through active scans of the public
Internet. Therepository is hosted by the ZMap Team at the University of Michigan and was founded in collaboration with

Rapid7. We are happy to host scan data responsibly collected by all researchers. A JSON interface to the repositoryis
available at https://scans.io/json.

Please contact Zakir Durumericwith any questions or to contribute data at scan-repository@umich.edu.

University of Michigan - HTTPS Ecosystem Scans W TCP/443, HTTPS, X.509, ZMap

Regular and continuing scans of the HTTPS Ecosystem from 2012 and 2013 including parsed and raw X.509 certificates, temporal state of
scanned hosts, and the raw ZMap output of scans on port 443. The dataset contains approximately 43 million unique certificates from 108
million hosts collected via 100+ scans.

University of Michigan - Hurricane Sandy ZMap Scans W TCP/443, ZMap

TCP SYN scans of the public |Pv4 address space on port 443 completed on October 30-31, 2012 in order to measure the impact of
Hurricane Sandy. The initial results from these scans were originally released as part of "ZMap: Fast Internet-Wide Scanning and its

Security Applications" at USENIX Security 2013. The dataset consists of the unique TCP SYN-ACK and RST responses received by ZMapin
CSV format.

Thank You!

J. Alex Halderman
https://jhalderm.com

ZMap Internet-wide scanner
https://zmap.io

Scan data repository
https://scans.io

Heartbleed reports
https://zmap.io/heartbleed

